Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Pharmacol Sin ; 44(10): 2125-2138, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37277492

RESUMO

Parthanatos is a type of programmed cell death dependent on hyper-activation of poly (ADP-ribose) polymerase 1 (PARP-1). SIRT1 is a highly conserved nuclear deacetylase and often acts as an inhibitor of parthanatos by deacetylation of PARP1. Our previous study showed that deoxypodophyllotoxin (DPT), a natural compound isolated from the traditional herb Anthriscus sylvestris, triggered glioma cell death via parthanatos. In this study, we investigated the role of SIRT1 in DPT-induced human glioma cell parthanatos. We showed that DPT (450 nmol/L) activated both PARP1 and SIRT1, and induced parthanatos in U87 and U251 glioma cells. Activation of SIRT1 with SRT2183 (10 µmol/L) enhanced, while inhibition of SIRT1 with EX527 (200 µmol/L) or knockdown of SIRT1 attenuated DPT-induced PARP1 activation and glioma cell death. We demonstrated that DPT (450 nmol/L) significantly decreased intracellular NAD+ levels in U87 and U251 cells. Further decrease of NAD+ levels with FK866 (100 µmol/L) aggravated, but supplement of NAD+ (0.5, 2 mmol/L) attenuated DPT-induced PARP1 activation. We found that NAD+ depletion enhanced PARP1 activation via two ways: one was aggravating ROS-dependent DNA DSBs by upregulation of NADPH oxidase 2 (NOX2); the other was reinforcing PARP1 acetylation via increase of N-acetyltransferase 10 (NAT10) expression. We found that SIRT1 activity was improved when being phosphorylated by JNK at Ser27, the activated SIRT1 in reverse aggravated JNK activation via upregulating ROS-related ASK1 signaling, thus forming a positive feedback between JNK and SIRT1. Taken together, SIRT1 activated by JNK contributed to DPT-induced human glioma cell parthanatos via initiation of NAD+ depletion-dependent upregulation of NOX2 and NAT10.


Assuntos
Glioma , Parthanatos , Sirtuína 1 , Humanos , Glioma/tratamento farmacológico , Acetiltransferases N-Terminal/genética , Acetiltransferases N-Terminal/metabolismo , NAD/metabolismo , NADPH Oxidase 2/metabolismo , Parthanatos/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sirtuína 1/metabolismo , Regulação para Cima
2.
Acta Pharmacol Sin ; 44(9): 1906-1919, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37186123

RESUMO

Parthanatos is a type of programmed cell death initiated by over-activated poly (ADP-ribose) polymerase 1 (PARP1). Nuclear translocation of apoptosis inducing factor (AIF) is a prominent feature of parthanatos. But it remains unclear how activated nuclear PARP1 induces mitochondrial AIF translocation into nuclei. Evidence has shown that deoxypodophyllotoxin (DPT) induces parthanatos in glioma cells via induction of excessive ROS. In this study we explored the downstream signal of activated PARP1 to induce nuclear translocation of AIF in DPT-triggered glioma cell parthanatos. We showed that treatment with DPT (450 nM) induced PARP1 over-activation and Tax1 binding protein 1 (TAX1BP1) distribution to mitochondria in human U87, U251 and U118 glioma cells. PARP1 activation promoted TAX1BP1 distribution to mitochondria by depleting nicotinamide adenine dinucleotide (NAD+). Knockdown of TAX1BP1 with siRNA not only inhibited TAX1BP1 accumulation in mitochondria, but also alleviated nuclear translocation of AIF and glioma cell death. We demonstrated that TAX1BP1 enhanced the activity of respiratory chain complex I not only by upregulating the expression of ND1, ND2, NDUFS2 and NDUFS4, but also promoting their assemblies into complex I. The activated respiratory complex I generated more superoxide to cause mitochondrial depolarization and nuclear translocation of AIF, while the increased mitochondrial superoxide reversely reinforced PARP1 activation by inducing ROS-dependent DNA double strand breaks. In mice bearing human U87 tumor xenograft, administration of DPT (10 mg· kg-1 ·d-1, i.p., for 8 days) markedly inhibited the tumor growth accompanied by NAD+ depletion, TAX1BP1 distribution to mitochondria, AIF distribution to nuclei as well as DNA DSBs and PARP1 activation in tumor tissues. Taken together, these data suggest that TAX1BP1 acts as a downstream signal of activated PARP1 to trigger nuclear translocation of AIF by activation of mitochondrial respiratory chain complex I.


Assuntos
Glioma , Parthanatos , Humanos , Camundongos , Animais , Fator de Indução de Apoptose/genética , Superóxidos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , NAD/metabolismo , Transporte de Elétrons , Complexo I de Transporte de Elétrons , Glioma/metabolismo , Proteínas de Neoplasias/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
3.
Acta Pharmacol Sin ; 42(10): 1690-1702, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34112960

RESUMO

Ferroptotic cell death is characterized by iron-dependent lipid peroxidation that is initiated by ferrous iron and H2O2 via Fenton reaction, in which the role of activating transcription factor 3 (ATF3) remains elusive. Brucine is a weak alkaline indole alkaloid extracted from the seeds of Strychnos nux-vomica, which has shown potent antitumor activity against various tumors, including glioma. In this study, we showed that brucine inhibited glioma cell growth in vitro and in vivo, which was paralleled by nuclear translocation of ATF3, lipid peroxidation, and increases of iron and H2O2. Furthermore, brucine-induced lipid peroxidation was inhibited or exacerbated when intracellular iron was chelated by deferoxamine (500 µM) or improved by ferric ammonium citrate (500 µM). Suppression of lipid peroxidation with lipophilic antioxidants ferrostatin-1 (50 µM) or liproxstatin-1 (30 µM) rescued brucine-induced glioma cell death. Moreover, knockdown of ATF3 prevented brucine-induced accumulation of iron and H2O2 and glioma cell death. We revealed that brucine induced ATF3 upregulation and translocation into nuclei via activation of ER stress. ATF3 promoted brucine-induced H2O2 accumulation via upregulating NOX4 and SOD1 to generate H2O2 on one hand, and downregulating catalase and xCT to prevent H2O2 degradation on the other hand. H2O2 then contributed to brucine-triggered iron increase and transferrin receptor upregulation, as well as lipid peroxidation. This was further verified by treating glioma cells with exogenous H2O2 alone. Moreover, H2O2 reversely exacerbated brucine-induced ER stress. Taken together, ATF3 contributes to brucine-induced glioma cell ferroptosis via increasing H2O2 and iron.


Assuntos
Fator 3 Ativador da Transcrição/metabolismo , Antineoplásicos/uso terapêutico , Ferroptose/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Ferro/metabolismo , Estricnina/análogos & derivados , Sistema y+ de Transporte de Aminoácidos/metabolismo , Animais , Antineoplásicos/farmacologia , Catalase/metabolismo , Linhagem Celular Tumoral , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , NADPH Oxidase 4/metabolismo , Neoplasias/tratamento farmacológico , Estricnina/farmacologia , Estricnina/uso terapêutico , Superóxido Dismutase-1/metabolismo , Regulação para Cima/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Acta Pharmacol Sin ; 42(8): 1324-1337, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33879840

RESUMO

FOXO3a (forkhead box transcription factor 3a) is involved in regulating multiple biological processes in cancer cells. BNIP3 (Bcl-2/adenovirus E1B 19-kDa-interacting protein 3) is a receptor accounting for priming damaged mitochondria for autophagic removal. In this study we investigated the role of FOXO3a in regulating the sensitivity of glioma cells to temozolomide (TMZ) and its relationship with BNIP3-mediated mitophagy. We showed that TMZ dosage-dependently inhibited the viability of human U87, U251, T98G, LN18 and rat C6 glioma cells with IC50 values of 135.75, 128.26, 142.65, 155.73 and 111.60 µM, respectively. In U87 and U251 cells, TMZ (200 µM) induced DNA double strand breaks (DSBs) and nuclear translocation of apoptosis inducing factor (AIF), which was accompanied by BNIP3-mediated mitophagy and FOXO3a accumulation in nucleus. TMZ treatment induced intracellular ROS accumulation in U87 and U251 cells via enhancing mitochondrial superoxide, which not only contributed to DNA DSBs and exacerbated mitochondrial dysfunction, but also upregulated FOXO3a expression. Knockdown of FOXO3a aggravated TMZ-induced DNA DSBs and mitochondrial damage, as well as glioma cell death. TMZ treatment not only upregulated BNIP3 and activated autophagy, but also triggered mitophagy by prompting BNIP3 translocation to mitochondria and reinforcing BNIP3 interaction with LC3BII. Inhibition of mitophagy by knocking down BNIP3 with SiRNA or blocking autophagy with 3MA or bafilomycin A1 exacerbated mitochondrial superoxide and intracellular ROS accumulation. Moreover, FOXO3a knockdown inhibited TMZ-induced BNIP3 upregulation and autophagy activation. In addition, we showed that treatment with TMZ (100 mg·kg-1·d-1, ip) for 12 days in C6 cell xenograft mice markedly inhibited tumor growth accompanied by inducing FOXO3a upregulation, oxidative stress and BNIP3-mediated mitophagy in tumor tissues. These results demonstrate that FOXO3a attenuates temozolomide-induced DNA double strand breaks in human glioma cells via promoting BNIP3-mediated mitophagy.


Assuntos
Antineoplásicos/uso terapêutico , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Proteína Forkhead Box O3/metabolismo , Glioma/metabolismo , Mitofagia/efeitos dos fármacos , Temozolomida/uso terapêutico , Animais , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Glioma/tratamento farmacológico , Humanos , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Nus , Mitocôndrias/efeitos dos fármacos , Proteínas Mitocondriais/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proteínas Proto-Oncogênicas/metabolismo , Ratos , Regulação para Cima/efeitos dos fármacos
5.
J Coll Physicians Surg Pak ; 29(4): 324-327, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30925953

RESUMO

OBJECTIVE: To determine the comparative effect of monosialoganglioside versus citicoline on the content changes of serum apoptotic factors (PDCD5, sFas and sFasL), neurological function indices (BDNF, NSE, S100-ß and NGF) and oxidative stress indices (SOD, MDA and GSH-PX) in newborns with hypoxic-ischemic encephalopathy (HIE). STUDY DESIGN: An experimental study. PLACE AND DURATION OF STUDY: Emergency Department, Affiliated Children's Hospital of Zhengzhou University, China, from October 2016 to February 2018. METHODOLOGY: A total of 90 newborns with HIE were randomly divided into a treatment group and a control group, with 45 cases in each group. In addition to the conventional treatment, the treatment group was given monosialoganglioside treatment, while the control group was given citicoline treatment. Both groups were treated for 10 days. After treatment, the content differences of serum apoptosis factors (PDCD5, sFas and sFasL), neurological function indices (BDNF, NSE, S100-ß and NGF) and oxidative stress indices (SOD, MDA and GSH-PX) were observed in the two groups. RESULTS: After treatment, the levels of serum PDCD5, sFas, sFasL, MDA, NSE and S100-ß in the treatment group were lower than those in the control group (all p<0.001). The contents of serum SOD, GSH-PX, BDNF and NGF in the treatment group were higher than those in the control group (all p<0.001). CONCLUSION: Monosialoganglioside can effectively improve the apoptotic factors, neurological function and oxidative stress indices in newborns and maintain the stability of the internal environment, so it is worthy of promotion and application.


Assuntos
Apoptose/efeitos dos fármacos , Citidina Difosfato Colina/uso terapêutico , Gangliosídeos/uso terapêutico , Hipóxia-Isquemia Encefálica/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/sangue , Proteínas Reguladoras de Apoptose/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/sangue , Fator Neurotrófico Derivado do Encéfalo/efeitos dos fármacos , China , Feminino , Humanos , Hipóxia-Isquemia Encefálica/sangue , Lactente , Masculino , Proteínas de Neoplasias/sangue , Proteínas de Neoplasias/efeitos dos fármacos , Subunidade beta da Proteína Ligante de Cálcio S100/sangue , Subunidade beta da Proteína Ligante de Cálcio S100/efeitos dos fármacos , Superóxido Dismutase/sangue , Superóxido Dismutase/efeitos dos fármacos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...